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In‑depth insights into Alzheimer’s 
disease by using explainable 
machine learning approach
Bojan Bogdanovic1*, Tome Eftimov2 & Monika Simjanoska1,3

Alzheimer’s disease is still a field of research with lots of open questions. The complexity of the disease 
prevents the early diagnosis before visible symptoms regarding the individual’s cognitive capabilities 
occur. This research presents an in‑depth analysis of a huge data set encompassing medical, 
cognitive and lifestyle’s measurements from more than 12,000 individuals. Several hypothesis were 
established whose validity has been questioned considering the obtained results. The importance of 
appropriate experimental design is highly stressed in the research. Thus, a sequence of methods for 
handling missing data, redundancy, data imbalance, and correlation analysis have been applied for 
appropriate preprocessing of the data set, and consequently XGBoost model has been trained and 
evaluated with special attention to the hyperparameters tuning. The model was explained by using 
the Shapley values produced by the SHAP method. XGBoost produced a f1‑score of 0.84 and as such 
is considered to be highly competitive among those published in the literature. This achievement, 
however, was not the main contribution of this paper. This research’s goal was to perform global and 
local interpretability of the intelligent model and derive valuable conclusions over the established 
hypothesis. Those methods led to a single scheme which presents either positive, or, negative 
influence of the values of each of the features whose importance has been confirmed by means of 
Shapley values. This scheme might be considered as additional source of knowledge for the physicians 
and other experts whose concern is the exact diagnosis of early stage of Alzheimer’s disease. The 
conclusions derived from the intelligent model’s data‑driven interpretability confronted all the 
established hypotheses. This research clearly showed the importance of explainable Machine learning 
approach that opens the black box and clearly unveils the relationships among the features and the 
diagnoses.

Alzheimer’s disease (AD) is considered to be common cause of dementia  worldwide1. Over time, people with 
Alzheimer’s disease suffer memory loss as well as the ability to concentrate. In advanced stages of the disease, 
there are severe complications such as dehydration, malnutrition or infection, which eventually result in  death2. 
Since its first description in the early twentieth century, there is still no treatment that cures Alzheimer’s disease 
or alters the disease process in the brain. However, the course of Alzheimer’s can be positively influenced by 
a number of different medications and non-drug treatments, making it crucial for people with Alzheimer’s to 
receive early good care and support.

Even associated with forgetfulness, AD affects different aspects of individual’s personality, life experiences, 
current circumstances and wrong responses to the situations they suddenly find themselves  in3, and relationships 
with other people as is the verbal communication. The gradual nature of affecting the short-term memory at 
first and the long-term memory at later stages makes the maintenance of orientation in time and space inevita-
bly difficult. This is also visible through the work of an artist that presents a time-series of self-portraits of his 
Alzheimer’s disease progresses in  time4 and the original work clearly shows the cognitive decline and spatial 
disorientation, however, the emotion still highly remains in each of the original works.

It is not yet possible to diagnose Alzheimer’s with complete certainty using the currently available tests while 
the person is still alive. The disease is diagnosed if someone has the typical symptoms eliminating all the other 
possible causes. Since symptoms like forgetfulness, changes in behavior and problems with orientation might 
have many different causes, it is important not to rush to a diagnosis of Alzheimer’s. The symptoms might also be 
caused by depression or other physical conditions like meningitis, a stroke or bleeding in the  brain5. Conducting 

OPEN

1Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje 1000, North 
Macedonia. 2Computer Systems Department, Jozef Stefan Institute, Ljubljana 1000, Slovenia. 3iReason, LLC, 
Skopje 1000, North Macedonia. *email: bojan.bogdanovic@students.finki.ukim.mk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-10202-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6508  | https://doi.org/10.1038/s41598-022-10202-2

www.nature.com/scientificreports/

an effective clinical trial is crucial to accurately predict the change in AD’s indicators so that the effect of the 
treatment can be assessed. The most common approaches are:

• Manual prediction by a clinical expert by using the clinical history of patients with similar conditions and 
visual analysis of various brain scans.

• Regression analysis to predict the future indicator changes in patient status, based on data from  MRI6, cog-
nitive test  scores7, rate of cognitive  decline8, and also retrospectively staging subjects by time to conversion 
between  diagnoses9.

• Supervised Machine Learning (ML) has already shown to be effective in discrimination between AD patients 
from cognitively normal subjects by using MR  images10, variety of  biomarkers11, etc.

• Data-driven disease progression models are most recently used to predict AD in unsupervised manner. 
Examples include models built on a set of biomarkers to produce  discrete12,13 or  continuous14,15 pictures of 
disease progression. Also there are less comprehensive models that leverage structure in data such as MR 
 images16,17.

Even though it is still unclear what is the main cause of the disease, it has been shown that people with Alzhei-
mer’s do not have enough of an important chemical messenger called acetylcholine in their  brain18. And it has 
also been shown that small protein particles (for example plaques) build up in their brain. These might cause 
the nerve cells to  die19.

In20 several factors have been hypothesized to play a role in the Alzheimer’s disease occurrence, and those are:

• Age–starting at about age of 65, the probability of getting AD doubles every 5  years21,22.
• apolipoprotein E4 (APOE E4)–10 to 30 times higher of developing AD compared to non-carriers, i.e., subjects 

without the gene. However the exact mechanism through which the presence of APOE E4 leads to AD is not 
 known23.

• Gender–women seem more likely to develop AD than men. The reasons for this are still  unclear24.
• Medical conditions–type 2 diabetes, high blood pressure, high cholesterol,  obesity25, or  depression26 are known 

to increase the risk of developing dementia.
• Lifestyle factors–physical  inactivity27,  smoking28, unhealthy  diet29, excessive  alcohol30, or head  injuries31.

Newest clinical researches provide contemporary view about differentiating clinically diagnosed AD dementia 
from other neurodegenerative disorders using plasma P-tau21732, improvements in neuropathological diagnosing 
the  disease33 and possible approach for a drug development against its  progression34.

Considering the complexity of Alzheimer’s disease and the fact that multiple factors under various circum-
stances affect the onset of it, it is not sufficient to do simple machine learning experiments and aim for the best 
metrics. Using the interpretability of the ML model, provided by various explainable machine learning tech-
niques, can significantly help obtaining a bigger picture about risk factors influences on the particular diagnosis. 
The interpretability shows interesting yet still not proven trends that are present in the used dataset.

Multiple recent papers using interpretability techniques have provided compelling results and  guidelines35 for 
further medical expertise, including  regular36 and multi layer multi  modal37 interpretability of the Alzheimer’s 
disease, interpretability of ensemble learning algorithms for predicting  dementia38 and extracting explainable 
assessments from MRI imaging  scans39.

Hypothesis. This research is focused on deep investigation of some of the factors that are claimed to play 
an important role for the occurrence and further development of Alzheimer’s disease by following explainable 
Machine Learning (ML) approach. The research puts the following hypothesis at test:

• Hypothesis 1: There is gender predisposition for obtaining Alzheimer’s disease.
• Hypothesis 2: APOE4 gene is crucial decisive factor for Alzheimer’s disease diagnosis.
• Hypothesis 3: Older people are more prone to Alzheimer’s disease.
• Hypothesis 4: Cognitive tests distinguish between all stages leading to Alzheimer’s disease.

To test the established hypothesis, a data set encompassing 12,741 subjects medically confirmed to belong 
into five categories - cognitively normal (CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive 
Impairment (LMCI), Significant Memory Concern (SMC) or Alzheimer’s disease (AD), will be used to develop 
intelligent model able to classify the patients with high precision and recall with the aim to further interpret the 
model by the explainable ML methods.

The paper is organized as follows. The data set is fully described in “Materials and methods” section. In the 
same “Materials and methods” section there is a comprehensive description of the data preprocessing as well 
as the ML approach applied to the data set. The intelligent model’s results are provided in “Results” section. 
The model is interpreted by means of explainable ML in “Explainable machine learning” section upon which 
a discussion showing the importance of the research is provided in “Discussion” section. “Conclusion” section 
presents the final conclusion over the established hypotheses.
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Materials and methods
Figure 1 presents the complete methodology as a roadmap followed to analyse and derive valuable conclusions 
from the data. Six different phases can be distinguished encompassing methods as follows:

• Phase 1: Data set analysis. In this step the subjects and all the features available in the database are analysed 
in terms of their importance for the problem at hand.

• Phase 2: Data set preprocessing. This phase is focused on methods for incomplete data, redundant features, 
encoding, correlation analysis, missing values, and imbalanced targets handling, from which as a result a 
data set prepared for ML will be obtained.

• Phase 3: Training ML model. At the ML phase, XGBoost model has been trained, and also hyperparameters 
tuning has been performed.

• Phase 4: Interpretability. This is the most important phase considering the contribution of the research, since 
it allows the global and local interpretability of the trained model by using Shapley values and thus, provides 
deep insight into the features influence on the prediction of each of the classes.

• Phase 5: Valuable conclusions. Based on the previous phase, valuable conclusions are derived at this phase 
followed by comprehensive discussion.

• Phase 6: Hypothesis testing. At the last phase, the research is concluded by reconsidering the established 
hypothesis based on the results from Phase 5.

Data set analysis. The data set used in this research is used in the TADPOLE Challenge (The TADPOLE 
Challenge compares the performance of algorithms at predicting the future evolution of individuals at risk of 
Alzheimer’s disease.) and retrieved from ADNI (Alzheimer’s Disease Neuroimaging Initiative) available at their 
official website (http://adni.loni.usc.edu/). In order to obtain permission for data usage, a request has been sent 
together with an explanation for the purpose of the research.

The original data set contains data from 12,741 subjects and 1,907 attributes. Mainly the attributes arise from 
two categories: quantitative parameters and personal information. As provided in the data set description, the 
data is labeled by medical experts.

Considering the sparse data set problem and according to the suggestions provided in the data set  source40, 
17 features have been chosen to be informative for most of the patients covering personal information, gene 
expression analysis, medical information and cognitive tests information. Those feature are considered to carry 
information needed to test the hypothesis established in “Hypothesis” section.

Each row represents data for one subject, and each column represents a feature or measurement related to 
the subject. The features can be divided into six categories, encompassing:

Figure 1.  Methodology workflow.

http://adni.loni.usc.edu/
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• Personal information:

– PTID: Participant ID
– AGE: Age at baseline
– PTGENDER: Sex
– PTEDUCAT : Years of education
– PTRA CCA T: Race

• Gene expression:
– APOE4: Expression of the ApoE4 gene

• PET measures:

– FDG: measure cell metabolism, where cells affected by AD show reduced metabolism.
– AV45: measures amyloid-beta load in the brain, where amyloid-beta is a protein that mis-folds (i.e. its 

3D structure is not properly constructed), which then leads to AD.

• MRI measures:

– Hippocampus: scan of a complex brain structure embedded deep into temporal lobe.
– WholeBrain: scan of the subject’s whole brain.
– Entorhinal: scan of an area of the brain that is located in the medial temporal lobe and functions as a 

hub in a widespread network for memory, navigation and the perception of time.
– MidTemp: scan of the middle temporal artery.

• Cognitive tests:

– CDRSB: Clinical Dementia Rating Scale - Sum of Boxes.
– ADAS11: Alzheimer’s Disease Assessment Scale 11.
– MMSE: Mini-Mental State Examination.
– RAVLT_immediate: Rey Auditory Verbal Learning Test (sum of scores from 5 first trials).

• Target:
– DX_bl: Subject’s diagnosis, i.e., the target variable of which we want to gain a deeper understanding. We 

built models whose goal is to predict the value of this variable based on the values of other features. The 
target variable can result in any of the following five values: CN (Cognitive Normal), EMCI (Early Mild 
Cognitive Impairment), LMCI (Late Mild Cognitive Impairment), SMC (Significant Memory Concern) 
and AD (Alzheimer’s Disease).

Those features are measured by techniques that are able to assess some indicators of whether the individual might 
be at risk of development, or, has already developed AD symptoms.

The cognitive tests allow the examiner to obtain an overall sense of whether a person is aware of the symp-
toms, the surrounding environment, whether he/she can remember a short list of words, follow some instructions 
and do simple calculations. Cognitive tests are able to measure cognitive decline in a direct and quantifiable 
manner. However, the cognitive decline is one of the latest to become abnormal. This is because the first abnor-
malities are first noticed at a microscopical scale through the misfolding of a protein called Amyloid beta. These 
are followed by changes at larger scales, such as loss of the neurons myelin sheath, neuron death, visible atrophy 
in MRI scans and finally cognitive decline.

Cognitive tests, however, have several limitations that affect their reliability and those are related to remem-
bering them if taken several times, might have floor or ceiling effects, which means that many subjects might 
score the highest/lowest score possible, and can be biased, as they are undertaken by a human expert who might 
be influenced by prior knowledge of the subject’s cognitive  abilities41.

Magnetic resonance imaging (MRI) is a technique used to quantify by measuring the volume of gray matter 
- GM (consisted of nerve cells) and white matter - WM (fibres connecting the nerve cells). Atrophy is indicated 
by the loss of volume between one scan and other follow-up scan. It is caused by the death of neurons in regions 
affected. Quantification of atrophy with MRI is a very important parameter as it is widely available and non-
invasive good indicator of progression of MCI to  dementia42–44.

The Positron Emission Tomography (PET) enables researchers to track the concentration of abnormal pro-
teins (amyloid and tau) since the contrast agent (containing the tracer) spreads throughout the brain and binds 
to abnormal proteins. PET scans can be of several types, depending on the cellular and molecular processes that 
are being measured. Fluorodeoxyglucose (FDG) PET can be used to measure cell metabolism. Neurons that are 
about to die show reduced metabolism, so FDG PET is an indicator of neurodegeneration. AV45 PET is used to 
measure the levels of abnormal proteins such as amyloid-beta.

The errors in Amyloid-beta 3D structure (misfolding) is thought to be one of the causes of AD since its high 
levels lead to neurodegeneration and cognitive decline. The basic limitation of PET scans is that the patient is 
exposed to ionizing radiation, which limits the number of scans they can take in a specific time  interval42,45.

The APOE gene provides instructions for producing a protein called apolipoprotein E, and that is why the 
gene expression measurement is an important technique by which the activity of APOE gene can be quantified. 
This protein aids the formation of lipoproteins by combining with fats (lipids) in the body. There are at least 
three slightly different versions (alleles) of the APOE gene. The major alleles are e2, e3, and e4. The e4 version 
of the APOE gene is believed to increase an individual’s risk for developing AD. People who inherit one copy of 
the APOE e4 allele have an increased chance of developing the disease, those with two copies of the allele are 
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at even greater risk. In TADPOLE data set, an information about individual’s number of present e4 alleles (0, 
1 or 2) is available. However, not necessarily the individuals with AD have the APOE e4 allele, and also not all 
individuals who have this allele will develop  AD46.

Data set preprocessing. Incomplete data. Figure 2 shows that all subjects contain personal information 
and diagnosis, but not all of them have data for all the other parameters. All subjects with incomplete data have 
been detected since incomplete data can cause a lot of troubles in the process of data analysis and building the 
intelligent model later described in this section. Since the removal of all subjects where data for at least one at-
tribute is missing causes significant information loss, an attempt is be made to use the leverage of some imputa-
tion techniques.

For example, only 2,118 subjects have data for the AV45 attribute. Removing all subjects (rows) that contain 
any missing data from our data set results into new data set with 1,121 entries.

Therefore, it is decided to remove all subjects that miss data for more than 6 features, and then perform data 
augmentation by using the imputation techniques later described in this section. The initial data removal resulted 
in 9,592 subjects left for further analysis.

Redundant features. The redundancy analysis of the features is crucial step for appropriate experimental setup. 
Taking a closer look at the PTRA CCA T column in Table 1, it can be perceived that almost 93% entries have value 
’white’. It means that this attribute does not provide enough information about possible racial predisposition for 
the disease. Most of the subjects belong to same racial group and only few belong to other groups, so this feature 
is be excluded from further analysis. Also PTID attribute is omitted because it is an identification number for 
each subject and has no meaning for the models we intend to build.

Figure 2.  Data set summary.

Table 1.  Unique PTRA CCA T values (only subjects with non missing data are considered).

Race Number of subjects

White 1046

Black 36

More than one 16

Asian 15

Unknown 3

Hawaiian/Other PI 3

Am Indian/Alaskan 2
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Categorical features encoding. The attributes PTGENDER (Male/Female) and DX_bl (CN, EMCI, LMCI, 
SMC, and AD) are of categorical data type. Simply encoding the attribute ’Male’ with the value 1 while ’Female’ 
with 0, would lead to increase the weight of Male compared to that of Female. This does not make sense since 
both variables need to be treated equally by the model to predict accurate results. To achieve equality one-hot 
encoding is used for encoding the PTGENDER attribute. This encoding is appropriate for categorical data where 
no relationship exists between categories. It involves representing each categorical variable with a binary vector 
that has one element for each unique label and marking the class label with a 1 and all other elements 0.

Considering the target attribute DX_bl, it can be seen that there is a certain order related to its values. The 
values can be ranked from CN to AD, based on the subject’s neuropsychological disorder. Therefore, Label 
encoding has been used to simply convert labels to integer values in ascending order.

Correlation analysis. Assuming correlation between two features, it means that one of them does not contrib-
ute to better representation of the information for the model to be learned, thus it can be omitted. Heat map 
representation as shown on Fig. 3 has been used to represent the linear correlations between the features in the 
data set used for this research.

The map provides a strong negative correlation of -1 between PTGENDER_Male and PTGENDER_Female. 
This coefficient does not provide anything relevant since both features are discrete and represent same category 
of data, so it will be ignored.

On the other hand, a trend of pretty high coefficients can be noticed between ADAS11 and other cognitive 
tests results. In fact, highest negative coefficient is between ADAS11 and MMSE (-0.76) and highest positive 
coefficient is between ADAS11 and CDRSB (0.73). It is possible that this feature does not provide any new 
information. It seems like it contains repetitive information from other tests. To determine the correlation, the 
coefficient alone is not sufficient. Additionally, graph-based representation (Fig. 4) is used between the two 
features to better understand the dependency.

From the plot a kind of linear dependency between these two features can be perceived. Plots of ADAS11 and 
CDRSB / RAVLT_immediate show something similar too. Considering the analysis, we assume that ADAS11 
does not provide any new information, thus this feature is redundant and can be omitted from the final data set.

Missing values imputation. Discarding entire rows that contain missing values comes at the price of losing data 
which may be valuable, even though it is incomplete. In order to obtain the maximum information that the data 
set is providing, a missing values imputation is performed. Each imputation algorithm uses some kind of estima-
tion to obtain missing values, but that does not mean that the value is 100% estimated correctly. This can cause 
noise and bias problems in the data set and that is why it should be used with caution.

Figure 3.  Linear correlation heat map for the data set.
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One type of imputation algorithm is univariate, which imputes values in the i − th feature dimension using 
only non-missing values in that feature dimension. Missing values can be imputed with a provided constant 
value, or using the statistics (mean, median or most frequent) of the particular column. This technique is also 
referred as simple imputing. By contrast, multivariate imputation algorithms use the entire set of available feature 
dimensions to estimate the missing values. These algorithms model each feature with missing values as a func-
tion of other features, and use that estimate for imputation. This technique is also referred as iterative imputing.

The goal is to compare different estimators to see which one is most effective for the data set. First, a subset of 
all rows with non missing value was extracted and its score was estimated. After that, a single value was randomly 
removed from each row and after iterative imputation of the missing values using different estimators, a score 
was estimated for each one of them.

Imbalanced targets distribution. Table 2 presents the targets distribution before and after elimination of sub-
jects with lack of data, i.e. the distribution of the five different classes considering the data set in different stages.

It can be noticed that there is a huge disproportion between the class with most values (LMCI) and class 
with least values (SMC). The aim is to create approximate uniform distribution of targets, such that each class 
will have similar number of instances. An undersampling of LMCI targets will be performed, combined with 
oversampling of other four classes.

Because the sampling processes mix original samples and artificially created ones, in order to be sure that the 
data set is not biased, first the data set is split into training (70%) and testing (30%) subsets and then separate 
sampling is performed into each one of them. Couple of different oversampling algorithms were tested combined 
with Random undersampling. The only exception is SMOTETomek algorithm which already combines methods 
for both oversampling and undersampling.

The pie charts in Fig. 5 represent the number of targets divided by classes in both training and testing subsets 
after the sampling techniques were applied. It can be seen that they are now almost uniformly distributed.

Figure 4.  Scatter plot between ADAS11 & MMSE.

Table 2.  Original versus reduced targets’ distribution.

Diagnosis DX_bl

Values

Original Reduced

LMCI 3.0 4644 3526

CN 1.0 3821 2652

EMCI 2.0 2319 1854

AD 5.0 1568 1196

SMC 4.0 389 364
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Machine Learning. Choosing the most optimal algorithm for solving the problem at hand depends on 
many factors like: size of the training data, training time, linearity, and number of features. The data set used is 
medium sized with average number of features allowing to experiment with more complex algorithms. Hence, 
the classifier built in this research uses XGBoost algorithm. Proven to show several advantages above other clas-
sification  algorithms47, XGBoost requires less feature engineering, meaning there is no need for scaling and nor-
malizing data. It is less prone to overfitting if the hyperparameters are tuned properly. For comparison purposes 
only, a Random Forest model was also built. To validate the trained classifiers properly, 5-fold cross-validation 
is performed on the training set.

One of the crucial steps in building ML model is tuning its hyperparameters - the arguments that can be set 
before training and which define how the training is done. These parameters are tunable and can directly affect 
how well a model trains. Thus, in order to achieve maximal performance, it is important to understand how to 
optimize them. To find the best combination of values for hyperparameters for both the Random Forest and 
XGBoost model, a range of values for every parameter has been defined and then Grid Search has been used 
which evaluates all combinations and chooses the best one.

Model evaluation. Different performance metrics are used to evaluate the intelligent model built as 
described in the previous section. Balanced accuracy is considered a good measure for this research since it is 
reliable metric even when the distribution of target variable classes in the data is not very balanced. Precision is 
also considered informative measure since it tells the proportion of subjects diagnosed with one of the diagnosis 
(predicted class), that actually had that diagnosis (real class). Recall is used to measure the proportion of subjects 
that actually had particular diagnosis (real class) was diagnosed by the model to have that diagnosis (predicted 
class). Specificity is also used to measure the model’s ability to correctly generate a negative result for subjects 
who do not have the condition that is being tested. A high-specificity model will correctly rule out almost every-

Figure 5.  Targets’ distributions after data balancing.
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one who does not have the disease and will not generate many false-positive results. A model with high sensitiv-
ity but low specificity, results in many individuals who are disease free being told of the possibility that they have 
the disease, and are then subject to further investigation. The last metric used is F1-score, presenting the har-
monic mean of both the precision and recall, and thus is considered to be very powerful for the problem at hand.

Explainable machine learning. In the context of ML systems, interpretability is the ability to explain 
the model’s output. When a model is built, one need to be able to understand how it is making the predictions. 
Feature importance helps in estimating how much each feature of the data contributed to the model’s prediction. 
In this research the feature importance is considered in terms of Shapley values by using the SHAP (SHapely 
Addictive exPlanations)  method48,49.

SHAP provides two aspects of model’s interpretability: 

1 The first one is global interpretability-the collective SHAP values can show how much each predictor con-
tributes, either positively or negatively, to the target variable. The summary variables importance plot shows 
the average impact each feature has for predicting each diagnosis, regardless if it is positive or negative. On 
regular variable importance plots, subjects are shown as colored dots. For each diagnosis there is a separate 
plot and for each feature, dots are arranged depending on the impact the value for that feature had on the 
subject to be predicted with the chosen diagnosis. The color of the dot indicates the value of the feature. For 
the dependence plots, dots are arranged on the x-axis by the value of the main chosen feature and on the 
y-axis by the positive/negative impact that value had for predicting the particular diagnosis. The color of a 
dot indicates the subject’s value for the second feature that the first one is in strongest interaction with.

2 The second aspect is local interpretability-each observation gets its own set of SHAP values. This greatly 
increases its transparency. These plots are subject specific. On the plots, blue arrows represent features that 
are increasing the predicting probability of a particular class (pushing it to the left), while red arrows are 
features that are decreasing the probability of a diagnosis to be predicted (pushing it to the right). Arrow’s 
length indicates how high the value of the feature is.

Ethics approval and consent to participate. As per ADNI protocols, all procedures performed in 
studies involving human participants were in accordance with the ethical standards of the institutional and/or 
national research committee and with the 1964 Helsinki declaration and its later amendments or comparable 
ethical standards. More details can be found at adni.loni.usc.edu. This article does not contain any studies with 
human participants nor animals performed by any of the authors.

Consent for publication. Authors proclaim that all terms of the data use agreement are accepted and 
included in the manuscript. The manuscript has been sent to ADNI Data and Publication Committee and it has 
been approved for publishing. Authors acknowledge that all images are entirely unidentifiable and there are no 
details on individuals reported within the manuscript.

Figure 6.  Comparison of multiple imputation algorithms performance.
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Results
Data preprocessing. Considering the data imputation methods applied, as it can be seen from the bar 
chart presented in Fig. 6, Extra Trees Regressor and Bayesian Ridge estimated values are closest to the origi-
nal data. Both of them are multivariate algorithms. On the other hand, univariate algorithms using mean and 
median failed to do the estimation very accurately, which is somewhat expected considering the fact that the 
data set contains features represented by sensitive data values where simple average does not solve the problem.

In addition, k-Nearest Neighbors imputation approach was performed. By default, a euclidean distance metric 
that supports missing values is used to find the nearest neighbors. Each missing feature is imputed using values 
from k-nearest neighbors that have a value for the feature. Although this type of imputation showed better results 
than the simple imputation algorithms, it did not surpass the iterative imputation using Extra Trees Regressor.

Considering the results from the comparison, the Extra Trees Regressor was chosen to impute the missing 
values in the original data set. After that, several such regressors with different number of estimators were tested 
on the original data set. Experiments have shown that Extra Trees Regressor with 100 estimators most effectively 
approximates the missing values.

Evaluation results suggest that the SMOTE oversampling algorithm provides the best results as shown in 
Fig. 7, although the difference from one to another is very minor. Another area to explore would be to test dif-
ferent values of the k-nearest neighbors selected in the SMOTE procedure when each new synthetic sample is 
created. The default is k=5, although larger or smaller values will influence the types of samples created, and in 
turn, may impact the performance of the model. The repeated and stratified k-fold evaluation showed that the 
oversampling process is most successful when the number of k-nearest neighbors is equal to 6 as depicted in 
Fig. 8.

Completing this step, the data preprocessing phase is finished and the data set is ready to serve as a source 
for building the intelligent models. The resulting data set after the preprocessing consists of 13,235 subjects.

XGBoost model evaluation. The confusion matrix for the XGBoost model is presented on Fig. 9. Major-
ity of subjects lay on the main diagonal. One of the model’s anomalies is the slightly increased number of AD 
patients predicted with a LMCI diagnosis. The same problem occurs with LMCI patients that are predicted 
with an AD diagnosis. This tells that perhaps there are some features that bring confusion between these two 
diagnoses. In addition, there is an increased trend into false negatives of the SMC class, but considering the fact 
that serious amount of the SMC subjects were created artificially, this phenomenon is somewhat understandable.

Table 3 shows complete evaluation of XGBoost performance, divided by target classes. XGBoost model 
managed to achieve balanced accuracy of 0.84. Other metrics are also very satisfactory, deviating from 0.8 to 
1.0. Table 4 shows comparison between this model’s metrics and results obtained using Random Forest model. 
XGBoost managed to guess more subjects with their correct diagnosis, thus it represents more accurate model.

Figure 7.  Oversampling algorithms comparison.
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XGBoost model interpretability. Global interpretability. The following Fig. 10 presents how high is 
each feature influence (variables importance) on each group of targets in average. Analysing the plot, it can be 
noticed that CDRSB leads by far the most in the impact on this model’s output. All features that describe cogni-
tive tests results are generally ranked on the top. Another thing worth mentioning is the position of FDG and 
APOE4. Since PTGENDER_Male and PTGENDER_Female are highly correlated and basically represent one 
feature, impact values of PTGENDER_Female are omitted here. Note that the gender and APOE4 features are at 
the very bottom, which means their values influence the outcome least. This information tells us that probably 
there is not a gender predisposition for obtaining Alzheimer’s disease. Many  studies50,51 say that e4 alleles of the 
APOE gene can be a predisposition for dementia, but not necessarily. From this result, it can be confirmed that 
the APOE gene does not act as a decisive factor for having a diagnosis.

Looking at the color distributions at some features, it can be seen that MMSE value impacts most on the 
CN subjects. On the other hand, subject’s age has most influence for LMCI class. For the AD class, the impact 
of the gender feature is insignificant. If we take a closer look on the green parts of each feature, we can notice 
that cognitive tests have highest impact on the CN class, while other features impact the output for this class in 
smaller amount. This analysis is done on a basis of complete training dataset.

Of significant importance is to prove robustness of the present conclusions, following the idea that the order 
of features importance is not linked only to the particular observation. To accomplish this, the training dataset 
was split using stratified 5-folds cross-validation technique. For each split, a new model with the same proper-
ties as the original one was built and trained on 4/5 folds of data. For each of these models, SHAP values of their 
training subsets were obtained indicating their most important features in descending order. Additionally, most 
important features based on the original testing dataset were obtained from the original model. The following 
approach provides information in which manner models using different datasets have learnt and ranked features 
importance compared to the ranking of features importance based on subset of data not recognizable for the 
model. Top 6 most influential features were selected for each model and using a Venn diagram visualization, 
their overlaps and intersections are presented in Fig. 11. Circles for XGBoost 1 to XGBoost 5 represent features 
importance originating from 5-fold cross-validation while XGBoost Test circle represents features obtained from 
the original testing dataset. On the diagram, it can be noticed that 5 out of 6 top features overlap in all six models. 
The only mismatch is occurring at model XGBoost 5 where instead of FDG, the feature Hippocampus is included. 
But, if we take the top 7 features, this will be over-passed since the 7th feature in the list for XGBoost 5 is indeed 
FDG. Observing the bigger picture, differences between a feature ranking in all models are happening only for 
a place or two. There are no large mismatches between the rankings, indicating that the global interpretability 
presented before is pretty stable and robust even for models using to some extent different datasets. In addition, 
the robustness of the interpretability method is extended over different tree-based algorithms too, indicating 
the independence between the selected algorithm and features influence on predicting the target variable. The 
discussion in Appendix A.2.1 provides evidence on obtaining the same top features for the random forest model 
in comparison to the XGBoost.

Considering the global interpretability, we can also take a closer look of whether one feature has positive or 
negative impact on the output and how high is it really, by looking at the summary plot for each diagnosis. The 

Figure 8.  K-neighbours validation.



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6508  | https://doi.org/10.1038/s41598-022-10202-2

www.nature.com/scientificreports/

plot is made of all the dots in the train data. Figures 12 and 13 depict the summary plots of variables importance 
for CN and LMCI class diagnosis.

On the summary plot of CN class, we can notice that low values of CDRSB have very high positive impact 
determining this diagnosis. Additionally, high values of MMSE and RAVLT_immediate also tend to have high 
positive impact. While other MRI measures do not give useful information on how they affect the model’s output, 
the WholeBrain feature have serious negative impact for higher values and vice versa. The same statement applies 
to Hippocampus too, but not to that extent.

Contrary to already mentioned conclusions, it can be noticed that younger subjects tend to decline from 
this diagnosis. Although the natural way of thinking is that neurological diseases affect only older people, that 
is not the truth. In addition, from TADPOLE data set it can be concluded that women are more inclined to 
neurodegeneration.

For the LMCI class, shown in Fig. 13, the situation is slightly different, as expected. Low AGE values are 
distributed on the positive axis now, denoting positive impact for this class. It can be seen that lower values for 
CDRSB have highly negative impact on this class, high values do not have any impact at all, while mid values 
have positive impact. It is very likely that high values are going to be distributed on the positive axis for the AD 
class. Here, high values of RAVLT_immediate have negative impact, which is somewhat expected. Other features 
(Hippocampus, FDG and MidTemp) have similar types of distributions denoting negative impact on model’s 
output for higher feature’s values.

Figure 14 shows that high CDRSB values indeed represent high positive impact for AD class. In opposite, 
higher MMSE values have significant negative impact. Looking at the PTEDUCAT feature, it can be seen that 
higher education has valuable negative impact on the Alzheimer’s diagnosis. Also, the APOE4 distribution 
indicates that subjects with zero e4 alleles have less chance of being labeled with AD than those with one or 
two. It can also be confirmed that subjects with lower values of FDG tend to be diagnosed with this diagnosis.

Even more information can be uncovered examining the partial dependence plot of one feature. This plot 
shows the marginal effect two features have on the predicted outcome. Once the first feature is chosen, the second 
is automatically selected depending with which one the first interacts most. These plots are also class specific.

Figure 9.  Confusion matrix for the XGBoost model.

Table 3.  XGBoost classification performance for each class.

Precision Recall Specificity F1-score

CN 0.86 0.90 0.96 0.88

EMCI 0.81 0.85 0.95 0.83

LMCI 0.78 0.81 0.94 0.80

SMC 0.94 0.78 0.99 0.85

AD 0.85 0.87 0.96 0.86
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Most of the plots show more complex correlation, or no correlation at all, but those that are most relevant 
will be examined.

First, the marginal effect FDG and CDRSB have on the predicted outcome is analysed for three different 
classes (EMCI, LMCI, AD) on Fig. 15. On all three plots we can notice the correlation between FDG and CDRSB, 
as subjects with lower FDG tend to have higher CDRSB results. The plot color changes progressively from yellow 
to blue, as we move on the x-axis from 0.6 to 1.8. But what fascinates the most is how the positive correlation 
that they have with the outcome gradually evolves into negative one, as the disease stages move from cognitive 
normal to Alzheimer’s disease.

In Fig. 16, it can be seen that younger subjects with two alleles e4 of APOE gene have bigger chances of having 
an Alzheimer’s disease. This represents intriguing information about the genetic predisposition of the disease, 
since we can see that APOE4 and AGE are correlated somehow. In addition, high values for AGE and zero e4 
alleles have negative impact on this class. Contrary, one e4 allele and higher age values have a positive impact.

Last but not least, there is pretty complex correlation between RAVLT_immediate and MidTemp and they 
also influence the output in non-straightforward way, thus a couple of statements can be made from Fig. 17. 
Diving deeper into the plot, it can be seen that subjects with lower values for RAVLT_immediate tend to have 
lower values for MidTemp too and they have mild positive influence for LMCI class. On the other hand, higher 
values for the cognitive test correlated with mid to high MidTemp values tend to have negative impact.

Local interpretability. By isolating a single subject, it can be explained graphically how features influence the 
subject to become labeled with particular class. One subject belongs to all classes with different probabilities and 
is labeled with the class with highest probability. Let’s consider a subject that was correctly predicted with AD 
diagnosis as shown in Fig. 18. The graph presents an output value or f(x) which is prediction probability for 
the particular observation, and base value or E[f(x)] which is the value that would be predicted if any features 
are not known for the current output (mean prediction). Observing the waterfall plot in Fig. 18 for the correctly 
predicted class and the LMCI class in Fig. 19, the following conclusions can be derived.

Table 4.  Comparison of models’ performance.

Precision Recall Specificity F1-score Accuracy Training time Prediction time

XGBoost Classifier 0.85 0.79 0.96 0.84 0.842 20.8 s 103 ms

Random Forest Classifier 0.78 0.79 0.95 0.79 0.787 5.16 s 157 ms

Figure 10.  Summary variables importance plot for XGBoost model.
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As it is expected for the AD class, almost all features have positive impact, except the MidTemp with signifi-
cant weak negative impact. The prediction is straightforward with pretty high probability. On the other side, the 
prediction for the LMCI class for the same subject have pretty mixed up feature impacts. We can see that some 
of the features influence positively in the favor of LMCI class, but other features have higher negative impacts 
together, thus the subject’s probability to belong to this class is pretty low. In both cases, the CDRSB impact is 
crucial.

This interpretation can be used to analyse the trends of false predicted subjects mentioned before. The features 
influence is examined on the predicted and true class of randomly selected subject belonging to the particular 
trend. For each of the Figs. 20, 21, 22, and 23 top plot represents the predicted class, while the bottom plot is 
for the true class.

On Fig. 20, a subject with LMCI diagnosis, predicted as AD is shown. It can be noticed that the difference 
between probability for the predicted class and the true one is slightly big. Besides CDRSB, in this case MMSE 
and AGE play significant role in increasing one’s probability and decreasing the other. It seems like most of the 
patient’s medical measurements indicate an AD instead of LMCI.

Figure 21 shows individual plots of a subject with SMC diagnosis, predicted as EMCI. Even bigger prob-
ability difference occurs here. On the first plot, almost all features influence positively in favor of EMCI diagnosis. 
The problem with many false predictions correlated to the SMC class may be because of the initially deficient 
subset of targets we were dealing with at the beginning. The low CDRSB value influences the most against the 
true class and in favor of the predicted one, which was indeed proven (higher CDRSB values tend to correlate 
with more devastating diagnoses).

In the next two Figs. 22 and 23, plots of a subject with SMC diagnosis, predicted as CN and subject with AD 
diagnosis, predicted as LMCI are shown. The probability difference in both cases is slightly smaller than before, 
but it is still pretty high. In the first case, CDRSB has positive impact for both classes, but for the predicted one 
it is slightly higher. MidTemp and AGE are playing the main role here in deciding the final output. In the last 

Figure 11.  Venn diagram presenting features impact ranking for various XGBoost models based on 5-fold 
cross-validation.
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Figure 13.  Variables importance plot for LMCI diagnosis.

Figure 12.  Variables importance plot for CN diagnosis.
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Fig. 23, MRI measurements have greatest impact on the subject. It can be seen that they have serious positive 
impact for the predicted class, in the same time decreasing the probability for the true class.

Discussion
The results are summarized in the Table 4. For summarizing the categorical metrics, weighted average representa-
tion has been used. Although the main goal in this research was not achieving highest performances, it still can 
be confirmed that comparing to a Random forest model, the XGBoost algorithm performs better classification 
of subjects and better distinguishes between different types of neurodegenerative diagnoses, indicating that it 
is more reliable and accurate than his opponent in this research. Detailed explanation of Random forest model 
evaluation and interpretability can be found under Appendix A.

The global interpretability of the intelligent model provided exceptional conclusions that were deeply 
explained in the previous section. However, not all of the conclusions were comprehensively discussed and 
thus, the features influence on predicting a particular class has been summarized in Table  5. The table provides 
detailed scheme of the positive (+), negative (-), and undefined (X) influence the particular value of the feature 
has on predicting the particular class. This scheme can be used as additional knowledge for the physicians and 
other related experts when they are making conclusions over the diagnosis for particular patient.

Considering the table of influences for the XGBoost model, it can be once again confirmed that XGBoost 
provides high interpretability of the problem, since there is very small amount of undefined influence statuses. 
Table 6 represents a merged table between the XGBoost’s and Random forest’s scheme. Luckily, there is a low level 
of inconsistency between the unveiled influence provided by both of the models. It is very rare that one model is 
contradictory to the other, e.g. the high education positive or negative influence on the SMC class is suspicious, 
and also APOE4 2 influence on the EMCI class is a matter of question whether it is positive or negative. The 
merged table provides achievement of a better understanding, unveiling the contribution to the undefined influ-
ence in each of them by masking two contradictory influence as undefined. Features influence for the Random 
forest model can be found in Supplementary Table S.2.

Table 4 also shows the times required for the models to be trained and to predict the entire test set. The 
XGBoost classifier requires more time to be trained since it uses gradient boosting algorithms in background, 
but its predictions are slightly faster than the ones of Random Forest classifier. Benefits obtained in terms of 
model’s exactness and validity for the time difference are more than worthy.

It can be concluded that XGBoost is proven to be an optimal algorithm for dealing with Alzheimer’s prediction 
problem using the particular data set. Table 7 presents a comparison of our XGBoost model with other models 

Figure 14.  Variables importance plot for AD diagnosis.



17

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6508  | https://doi.org/10.1038/s41598-022-10202-2

www.nature.com/scientificreports/

trained on the same original TADPOLE data  set52. As shown it can be perceived that our model is ranked second, 
and if a performance time is included as trade-off, then our model would be on the top of the list.

Considering the popular AD research, mostly considered those published in the latest years, Table 8 presents 
an interesting review not only of the obtained results and the data set used, but also on the experimental setup 

Figure 15.  Dependence plots between FDG and CDRSB for different classes.
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performed in each of the reported experiments. High accuracy metrics are reported, however most of them 
show no clear evidence on appropriate methods for data preprocessing, missing data imputation, hyperpa-
rameters tuning, appropriate split of train and testing set, and the data sets used are limited to at most nearly 
two thousand patients. The most remarkable research among the presented is the one published  in53 in which 
very comprehensive mathematically supported approach is presented with special attention on avoiding over/
underfitting problems.

Figure 16.  Dependence plot between APOE4 and AGE for AD class.

Figure 17.  Dependence plot between RAVLT_immediate and MidTemp for LMCI class.
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Figure 18.  Features influence on a subject with AD diagnosis to be predicted as AD.

Figure 19.  Features influence on a subject with AD diagnosis to be predicted as LMCI.
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Although findings and results obtained in scientific papers mentioned above cannot be directly compared 
with this research because of differences in approaches and data being used, still a general comparison can be 
provided. It can be noticed that instead of using data sets containing quantified values of different measurements 
(that is an example of our data set), some researchers use image processing of MRI  scans10,54 and spectrograms 
of patients’  voices55. In each research paper patients are labeled with a particular diagnosis. Although in some, 
patients are only distinguished between two different clinical  phases10,55–57. Comparing the obtained metrics from 
the prediction, it can be seen that most of the researches that use ADNI datasets managed to achieve impressive 
accuracy of their models, even greater than 0.9. The main goal in all these researches is to accomplishing the 
highest possible metrics in order to create a model that will predict a particular diagnosis most accurately and 
with greatest precision. Yet, it still remains unclear in which manner the model managed to achieve such results 
(i.e., the model is treated as a black-box without providing explanations about the contribution and influence of 
each feature to the end prediction). In this research, model’s metrics serve as a validation for the provided in-
depth analysis and interpretability. Using explainable machine learning methods, a bigger picture about features 
influence and their correlation is being presented. The main goal in this research is not to create the best model 

Figure 20.  Comparison between features impact on the predicted (AD) and true class (LMCI) of a subject.

Figure 21.  Comparison between features impact on the predicted (EMCI) and true class (SMC) of a subject.

Figure 22.  Comparison between features impact on the predicted (CN) and true class (SMC) of a subject.

Figure 23.  Comparison between features impact on the predicted (LMCI) and true class (AD) of a subject.
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(i.e., we are focusing only on a model with a good accuracy that can be used for providing interpretations), but 
rather to dive deeper into the importance and influence of each clinical measurement on a particular diagnosis.

Besides the satisfying metrics obtained from the model’s evaluation, clinical insights are also of a significant 
importance to validate the attained ranking of the features. The ranking follows the same manner as the disease 
symptoms progress from micro (based on cell metabolism and gene expression) to macro level (based on losing 
brain mass and cognitive decline)58. Gender and gene expressions are considered as predispositions, thus they do 
not represent strong and direct indications for the disease. On the other hand, results from cognitive tests provide 
clear and efficient understanding of the patient’s mental condition and clarify the exactness of it. The difference 
in importance between different types of scanning yet needs to be considered and validated from clinical experts.

Conclusion
The main objective of the study presented is to put at test the existing hypothesis regarding the causes and indi-
cators of Alzheimer’s disease. At the beginning of the research, four hypothesis were established considering 
the existing published literature. Hereafter, a large data set was obtained containing various types of features 
considering the lifestyle, personal information, medical analysis and cognitive tests of 12741 individuals (sub-
jects). The data set was used in accordance with ethics and after obtaining a special permission for research goals.

To test the established hypothesis, intelligent models were built by following a ML approach. The high per-
formance of the model (XGBoost) was used in advantage of explainable ML methods able to interpret the 
relations among the various features and therefore, to derive conclusion over the causes and indicators of the 
Alzheimer’s disease.

Table 5.  XGBoost global interpretability.

Diagnosis

Demographics Cognitive scores MRI PET Genotype

Gender Age Education CDRSB MMSE
RAVLT_
immediate WholeBrain Hippocampus Entorhinal MidTemp FDG APOE4

M F Young Old Low High Low High Low High Low High Low High Low High Low High Low High Low High 0 1 2

CN + − − X X + + − − + − + + − − + + − − X + X + − −

EMCI − + + − − X − + − X − − − + − + − + − + − + − X +

LMCI + − + X X X − − − X + − X X + −
lePara> + X + − + − − X X

SMC − + − − − + + − − X − + − + − + − − − − − + X X −

AD − + + + + − − + + − + − − + + − − − X + + − − + +

Table 6.  Merged scheme showing the influence of each feature on each of the diagnosis.

Diagnosis

Demographics Cognitive scores MRI PET Genotype

Gender Age Education CDRSB MMSE
RAVLT_
immediate WholeBrain Hippocampus Entorhinal MidTemp FDG APOE4

M F Young Old Low High Low High Low High Low High Low High Low High Low High Low High Low High 0 1 2

CN + − − X X + + − − + − + + − − + + − − − X X + − −

EMCI − + + − − X − + − + − − − + − + − + − + − + − + X

LMCI + − + − − + − − − X + − X − + − + − + − + − − X +

SMC − + − − − X + − − + − + − + − + − − − − − + X X −

AD − + + + + − − + + − + − − + + − − − X + + − − + +

Table 7.  Comparison of our model with some of the contestants of TADPOLE  Challenge52.

Feature selection Features
Missing data 
imputation Prediction model BCA Training time

Prediction time 
(per subject)

Frog Automatic 490 None Gradient boosting 0.849 1 h –

Our XGB Model Manual 13 Extra Trees Regressor XGBoost 0.842 20.8 sec 0.03 ms

BenchmarkSVM Manual 6 Mean of previous 
values SVM 0.764 20 sec 0.001 sec

SMALLHEADS - 
NeuralNet Automatic 376 Nearest neighbour Deep NN 0.605 40 min 0.06 sec

Rocket Manual 6 Median of diagnostic 
group

Linear mixed effects 
model 0.519 5 min 0.3 sec
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Reference

Dataset characteristics

Methodology Results CommentSize Features Origin Description Split

56 1909 subjects (MCI 
or AD) 44

Coalition Against 
Major Diseases 
(CAMD)

ADAS-Cog and 
MMSE scores,  
laboratory and 
clinical tests, 
background infor-
mation

Train: 75% Vali-
date: 5% Test: 20%

Conditional 
Restricted Boltz-
mann Machine 
(CRBM)

Accuracy: 0.5 
(differentiation 
between actual 
and synthetic 
patient data) R2: 
0.820.01 (observed 
vs. predicted cor-
relation )

Synthetic trajec-
tories starting for 
real patients and 
entirely synthetic 
patients are gener-
ated. Missing 
data imputation 
is performed. 
CRBM does not 
model correlation 
between cognitive 
scores and other 
variables very 
well. Some crucial 
parameters, 
such as levels 
of amyloid, are 
omitted from the 
dataset. Overall 
performances 
of the model are 
significant

55
36 subjects (HC: 13, 
AD: 23) / 32 (HC: 8, 
AD: 24)

504 / 488 VBSD / Dem@
Care

Extracted spectro-
gram features from 
subjects’voices. 
Each record-
ing is previously 
segmented.

Train: 35/31Test: 
1(subjects)

Logistic Regres-
sion CV (best 
among others)

Accuracy: 0.833 
/ 0.844 Precision: 
0.869 / 0.913 
Recall: 0.869 / 
0.875 F1-Score: 
0.869 / 0.894

It provides new 
and inventive 
approach for 
analyzing and 
predicting the 
disease. No data 
preprocessing is 
performed. Even 
after the segmen-
tation, datasets are 
still small-sized. 
Hyperparam-
eter tuning is not 
applied

57
343 sessions -150 
subjects (ND: 72, 
D:78)

15
Open Access 
Series of Imaging 
Studies (OASIS)

MRI scans and 
other brain meas-
urements, MMSE 
and CDR scores, 
demographic data

Random selection 
allocation for 
train, validate 
and test

Random Forest 
(best among 
others)

Accuracy: 
0.868 Precision: 
0.941Recall: 0.8 
AUC: 0.872

Detailed data 
processing and 
examination. 
Complete work-
flow following 
consecutive 
stages from data 
preprocessing to 
model evaluation. 
Only first visit 
for each patient 
is taken into 
account (e.g. cases 
when a patient 
convert from 
non-demented 
to demented are 
omitted). Only 
simple imputing 
techniques are 
considered

59
373 sessions–150 
subjects (ND:72, 
D:64, C:14)

15
Open Access 
Series of Imaging 
Studies (OASIS)

MRI scans and 
other brain meas-
urements, MMSE 
and CDR scores, 
demographic data

10-fold cross-
validation

Hybrid modeling 
(combination of 
four models)

Accuracy: 0.980 
Precision: 0.981 
Recall: 0.980 ROC: 
0.991

Three different 
approaches are 
being analyzed: 
manual feature 
selection, auto-
matic feature 
selection and 
hybrid modeling. 
Results obtained 
by hybrid 
modeling are 
fascinating, con-
taining high and 
stabile values. Not 
a single stage of 
data preprocessing 
and engineering is 
performed

Continued
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Reference

Dataset characteristics

Methodology Results CommentSize Features Origin Description Split

54
5000 images (Mild, 
Very Mild, Non, 
Moderate Demented)

1700 region pro-
posals per image

Alzheimer’s 
Disease Neuro-
imaging Initiative 
(ADNI)

MRI scan images Separate datasets 
for train and test

SVM, R-CNN and 
Fast R-CNN

Training time (h): 
R-CNN: 84 Fast 
R-CNN: 8.75

The main goal is 
to provide com-
parison between 
different object 
detection algo-
rithms in terms 
of their training 
and predicting 
times. No predic-
tion results and 
accuracy metrics 
are shown. No 
data preprocessing 
is shown

60
1721 subjects (521 
NC, 864 MCI, 336 
AD)

47 AD Neuroimaging 
Initiative (ADNI)

MRI and PET 
scans, CSF, gene 
expression and 
cognitive scores

Train: 70 %Vali-
date: 15% Test: 
15%

Recurrent Neural 
Network

Accuracy:AD - 
NC: 0.959 AD 
- MCI: 0.859 NC 
- MCI: 0.773

Whole focus is 
put on the RNN 
algorithm its pos-
sibilities and its 
evaluation. Filling 
data between dif-
ferent timestamps 
is performed on 
three various 
approaches. No 
information about 
data preprocessing 
is given. No miss-
ing data imputa-
tion is performed 
(missing values 
are replaced 
with 0)

11 202 subjects (52 HC, 
99 MCI, 51 AD)

189 (MRI ROI: 
93, PET ROI: 93, 
CSF: 3)

Alzheimer’s 
Disease Neuro-
imaging Initiative 
(ADNI)

MRI, FDG-PET 
and CSF biomark-
ers

10-fold cross-
validation

SVM (multiple 
kernel combina-
tion)

Accuracy: 0.932 
Specificity: 0.933 
Recall: 0.930

This study repre-
sents unified way 
of combining data 
from different 
sources into one 
kernel. Only three 
types of data are 
being used. An 
improvement 
of one model’s 
effectiveness 
using precise 
feature selection 
is shown. Before 
usage, images are 
preprocessed

10

Group I: CN:20, 
AD:20;Group II: 
CN:14,AD:14;Group 
III: CN: 57, AD: 33; 
Group IV: FTLD: 19

–

Each group of 
subjects comes 
from different 
community or 
research center

MR scans Leave-one-out 
technique SVM

Group I / Group 
II / Group III / 
Group IV: Accu-
racy:0.950 / 0.929 
/ 0.811 / 0.892 
Specificity: 0.950 
/ 0.857 / 0.930 / 
0.947 Recall: 0.950 
/ 1.00 / 0.606 / 
0.833

Differentiation 
between AD and 
FTLD subjects 
is represented 
as they are often 
misidentified. 
Detailed image 
preprocessing 
is performed. 
Results are better 
than most of the 
scientific works 
that used MRI 
before. Only two 
diagnoses at a 
time are taken 
into classification

53
785 subjects ( 184 
HC, 228 sMCI, 181 
pMCI, 192 AD)

– AD Neuroimaging 
Initiative (ADNI)

ROI, APOe4, cog-
nitive scores and 
demographic data

10-fold cross-
validation CNN

Accuracy: 0.925 
Specificity: 0.850 
Recall: 0.875

Very detailed 
and mathemati-
cally supported 
approach of using 
neural networks 
for classification 
is presented. Data 
preprocessing and 
feature selection 
is performed. 
Special attention 
is put on avoiding 
over/underfitting 
problems. All data 
is baseline

Table 8.  Analysis of the latest eminent literature.
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The most important contribution from this research is the established scheme presented in Table 8. This table 
provides a summarized features positive or negative influence on diagnosing each class, according to the global 
interpretability of both of the intelligent models built.

Thus, the comprehensive analysis of the features importance considering both the global and local interpret-
ability, led to the following important conclusions regarding the previously established hypothesis:

• Cognitive tests, especially CDRSB, have greatest influence on one model’s outcome regarding all of the classes.
• Higher CDRSB values tend to correlate with more devastating diagnoses.
• Subject’s gender impact slightly on the model’s outcome.
• There is a unique combination of MRI indicators influence for each of the diagnosis, and this might be really 

interesting for the physicians.
• APOE gene is not always a decisive factor in determining a diagnosis.
• Important thing noticed is high and low education influence positively on determining the extremely distance 

diagnoses, CN and AD, correspondingly.
• It also can be noticed that results from cognitive tests greatly contribute into the false prediction.
• It can also be confirmed that subjects with lower values of FDG tend to be diagnosed with AD, but also with 

LMCI.
• Subjects with lower FDG tend to have higher CDRSB results.
• Fascinating is how the positive correlation that FDG and CDRSB have with the outcome gradually evolves 

into negative one, as the disease stages move from CN to AD.
• Younger subjects with two alleles e4 of APOE gene also have bigger chances of developing AD.
• High values for AGE and zero e4 alleles have negative impact on developing AD.
• One e4 allele and higher AGE values have a positive impact on developing AD.

Considering the conclusions, it can be stated that using a data-driven approach, all the hypotheses are being 
rejected, showing that AD is a complex disease that cannot be initiated by genetics alone, nor the gender, nor 
the age, nor the lack of education. It is important to note that conclusions obtained from data-driven interpret-
ability, as in this case, cannot be taken for granted without consideration of medical experts, but they can provide 
significant hints and possible indications for further medical examinations and research.

This research is believed to have big influence on the future directions for understanding AD as well as large 
influence on the future researchers regarding the usage of explainable ML methods to unveil new knowledge 
also in other diseases data.

Such analysis are expected to affect also the medical approaches for on-time diagnosing and therefore, proper 
treating with the aim to slow down the progression of the disease, and thus reduce the damage that this disease 
causes to a person, as well as to his surrounding.

Data availability
Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led 
by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical 
and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.
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